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In this paper some new eighth algebraic order symmetric eight-step methods are intro-
duced. For these methods a direct formula for the computation of the phase-lag is given.
Based on this formula, the calculation of free parameters is done in order the phase-lag to be
minimal. The new methods have better stability properties than the classical one. Numerical
illustrations on the radial Schrödinger equation indicate that the new method is more efficient
than older ones.

KEY WORDS: symmetric methods, multistep methods, radial Schrödinger equation, reso-
nance problems, scattering problems, phase shift problems, phase-lag

AMS subject classification: 65L05

1. Introduction

Many problems in theoretical physics, theoretical chemistry, quantum physics and
physical chemistry (see, for example, [1–4]) consist of the radial Schrödinger equation.
This equation has the form:

y′′(x) =
[
l(l + 1)

x2
+ V (x)− k2

]
y(x). (1)

For the above reason the computational efficient solution of these types of equations via
numerical methods has a great research activity the last decades. In (1) the function
W(x) = l(l + 1)/x2 + V (x) denotesthe effective potential, which satisfiesW(x) → 0
asx → ∞, k2 is a real number denotingthe energy, l is a given integer, related to the
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angular momentum, andV is a given function representing the potential. The boundary
conditions are:

y(0) = 0 (2)

and a second boundary condition, for large values ofx, determined by physical consid-
erations.

Much research has been done on numerical methods for the numerical solution of
the Schrödinger equation and related problems (see [2,5,6,10–15]. For detailed reviews
see [16–18,22–27]). Most of the research has been made in symmetric two and four-step
methods.

In the present paper we derive a family of eight-step symmetric methods of al-
gebraic order eight with phase-lag of order ten, twelve and fourteen for the numerical
solution of the Schrödinger equation. We note here that the cost of these methods is
three, four and five function evaluations per step. In section 2 the phase-lag analysis of
eight-step methods is described and a direct formula for the computation of the phase-
lag for this type of methods is given. In section 3 the construction of the new method is
given. Numerical illustrations are presented in section 4.

2. Phase-lag analysis of eight-step symmetric methods

Applying an eight-step symmetric method to the test equationy′′ = −s2y we
obtain the following difference equation:

A(H)yn+4+ B(H)yn+3+ C(H)yn+2+D(H)yn+1+ E(H)yn

+D(H)yn−1+ C(H)yn−2+ B(H)yn−3+ A(H)yn−4 = 0 (3)

and the associated characteristic equation:

P(z)=A(H)z8+ B(H)z7+ C(H)z6+D(H)z5+ E(H)z4

+D(H)z3+ C(H)z2+ B(H)z+ A(H) = 0, (4)

whereH = sh.
Based on Lambert and Watson [7] we have the following definition.

Definition 1. A symmetric eight-step method with the characteristic equation given
by (4) is said to have aninterval of periodicity(0,H 2

0 ) if, for all H ∈ (0,H 2
0 ), the

rootszi, i = 1(1)8, satisfy

z1 = eiθ(H), z2 = e−iθ(H), and |zi| � 1, i = 3(1)8, (5)

whereθ(H) is a real function ofH .

Definition 2. For any symmetric eight-step method with the characteristic equation
given by (4) the phase-lag is equal to

t = H − θ(H) = cHq+1+O
(
Hq+2), (6)

wherec is thephase-lag constantandq is phase-lag order.
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Theorem 1. For all H in the interval of periodicity, the phase-lag of the eight-step
method with stability polynomial given by (4) is O(HQ) if:

2A(H) cos(4H)+ 2B(H) cos(3H)+ 2C(H) cos(2H)+ 2D(H) cos(H)+ E(H)

H [8A(H) sin(4H)+ 6B(H) sin(3H)+ 4C(H) sin(2H)+ 2D(H) sin(H)]
= O

(
HQ

)
, (7)

and we say that the phase-lag of the method is of orderQ if (7) is valid.

Proof. Puttingz = eiθ(H) we have:

2A(H) cos
(
4θ(H)

)+ 2B(H) cos
(
3θ(H)

)+ 2C(H) cos
(
2θ(H)

)
+ 2D(H) cos

(
θ(H)

)+ E(H) = 0. (8)

Putting nowθ(H) = H(1+ T (H)+O(H 2Q)), whereT (H) =∑2Q−1
Q piH

i, we have:

2A(H)
[
cos(4H)− 4HT (H) sin(4H)+O

(
H 2Q+2)]

+ 2B(H)
[
cos(3H)− 3HT (H) sin(3H)+O

(
H 2Q+2)]

+ 2C(H)
[
cos(2H)− 2HT (H) sin(2H)+O

(
H 2q+2

)]
+ 2D(H)

[
cos(H)−HT (H) sin(H)+O

(
H 2Q+2)]+ E(H) = 0. (9)

So, we have:

2A(H) cos(4H)+ 2B(H) cos(3H)+ 2C(H) cos(2H)+ 2D(H) cos(H)+ E(H)

−HT (H)
[
8A(H) sin(4H)+ 6B(H) sin(3H)+ 4C(H) sin(2H)+ 2D(H) sin(H)

]
+O

(
H 2Q+2

) = 0. (10)

It is obvious that the coefficient ofT (H) is of order O(H 2). Hence (10) implies
thatT (H) and the expression in (7) only differ by O(H 2Q) and the theorem follows from
the definition of phase-lag. �

3. Derivation of the new method

For the numerical integration of the Schrödinger equation we consider the three-
parameter family of eight-step methods, which is denoted as METH8(wi, i = 0(1)3):

yn,i = yn − wih
2(fn+3+ afn+2 + bfn+1

+ cfn,i−1 + bfn−1+ afn−2 + fn+3
)
, i = 0(1)3,

(11)
yn+4 − 2yn+3 + 2yn+2 − yn+1 − yn−1+ 2yn−2 − 2yn−3 + yn−4

= h2(q3fn+3+ q2fn+2 + q1fn+1+ q0fn,3+ q1fn−1 + q2fn−2+ q3fn+3),

wherefn,−1 = f (xn, yn), fn+i = f (xn+i , yn+i ), i = −4(1)4, andfn,i = f (xn, yn,i ),
i = 0(1)3.
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In order the above method has algebraic order eight, the following values of the
parameters must hold:

a = −6, b = 15, c = −20,

q0 = −12629

3024
, q1 = 20483

4032
, q2 = −3937

2016
, q3 = −17671

12096
.

(12)

The local truncation error of the produced method is

LTE= h10

725760

(
45767y(10)

n + 3030960w3y
(8)
n

)
, (13)

so the method is of eight algebraic order.
When we apply the above method to the test equationy′′ = −s2y we obtain the

difference equation (3) and the associated characteristic equation (4) with:

A(H)= 1,

B(H)=−2+ 17671

12096
H 2− 12629

3024
H 4w3+ 63145

756
H 6w3w2

− 315725

189
H 8w3w2w1+ 6314500

189
H 10w3w2w1w0,

C(H)= 2− 3937

2016
H 2+ 12629

504
H 4w3− 63145

126
H 6w3w2

+ 6315450

63
H 8w3w2w1− 12629000

63
H 10w3w2w1w0, (14)

D(H)=−1+ 20483

4032
H 2− 63145

1008
H 4w3+ 315725

252
H 6w3w2

− 1578625

63
H 8w3w2w1+ 31572500

63
H 10w3w2w1w0,

E(H)=−12629

3024
H 2+ 63145

756
H 4w3− 315725

189
H 6w3w2

+ 6314500

189
H 8w3w2w1− 126290000

189
H 10w3w2w1w0.

For the above method and based on theorem 1 we have that the phase-lag is given
by:

T (H)=
(
− 45767

7257600
+ 12629

30240
w0

)
H 8+

(
− 29851

2661120
+ 138919

181440
w0

)
H 10

+
(
−138919

9072
w3w2+ 467273

483840
w3− 3318163483

237758976000
+ 63145

378
w3w2w1

)
H 12

+
(
− 166033967

10973491200
+ 694595

2268
w3w2w1− 631450

189
w3w2w1w0

+ 964085231

914457600
w3− 467273

24192
w3w2

)
H 14
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+
[
−964085231

45722880
w3w2+ 1529334013

1371686400
w3− 7152335079299

447718440960000

+ 2336365

6048
w3w2w1− 3472975

567
w3w2w1w0

+ 1

10

(
45767

7257600
− 12629

30240
w3

)(
278039

181440
− 12629

504
w3

)]
H 16+ · · · . (15)

Based on (15) we have that in order the methods have minimal phase-lag the values
of parameters given in table 1 must hold.

We note here that in table 1:

T1 = −520367H 12

158505984000
, T2 = 76873H 14

896690995200
, T3 = −919071H 16

32011868528640000
.

For the values ofwi, i = 0(1)3, given in table 1, we determine the stability func-
tions given in figure 1. Based on this figure we have that the interval of periodicity for
the new methods is equal to:(0,0.64) (method I),(0,0.64) (method II) and(0,0.64)
(method III), i.e., larger than the interval of periodicity of the classical method (devel-
oped by Quinlan and Tremaine [21]) which is equal to(0,0.56).

4. Numerical illustrations – Schrödinger equation

Consider the numerical solution of the radial Schrödinger equation (1). In the
asymptotic region, the equation (1) effectively reduces to

y′′(x)+
(
k2− l(l + 1)

x2

)
y(x) = 0, (16)

for x greater than some valueX, whereX defines the asymptotic region.
The above equation has linearly independent solutionskxjl(kx) and kxnl(kx),

where jl(kx), nl(kx) are thespherical Besseland Neumann functions, respectively.
Thus, the solution of equation (1) has the asymptotic form (whenx →∞)

y(x)∼Akxjl(kx)− Bnl(kx)

∼D

[
sin

(
kx − πl

2

)
+ tanδl cos

(
kx − πl

2

)]
, (17)

whereδl is thephase shiftwhich may be calculated from the formula

tanδl = y(xi)S(xi+1)− y(xi+1)S(xi)

y(xi+1)C(xi)− y(xi)C(xi+1)
(18)

for xi andxi+1 distinct points on the asymptotic region (for which we have thatxi+1 is
the right-hand end point of the interval of integration andxi = xi+1−h, h is the stepsize)
with S(x) = kxjl(kx) andC(x) = kxnl(kx).

We evaluate the phase shiftδl from the above relation atxi in the asymptotic region.
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Table 1
Parameters of the new proposed methods.

Parameters Method I Method II Method III

w0 0 0
538111

412130664

w1 0
5724037

11984845600

5724037

11984845600

w2
164627

60412440

164627

60412440

164627

60412440

w3
45767

3030960

45767

3030960

45767

3030960

Phase-lag T1 T2 T3

Figure 1. Stability functions for the new methods.
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4.1. The Woods–Saxon potential

As a test for the accuracy of our methods we consider the numerical integration of
the one-dimensional Schrödinger equation (1) withl = 0 in the case whereV (x) is the
Woods–Saxon potential:

V (x) = VW(x) = u0

(1+ z)
− u0z

a(1+ z)2
(19)

with z = exp[(x − R0)/a], u0 = −50, a = 0.6 andR0 = 7.0.
For positive energies one has the so-called resonance problem. This problem con-

sists either of finding thephase shiftδ(E) = δl or of finding thoseE ∈ [1,1000], at
which δ equalsπ/2. We actually solve the latter problem, using the technique fully
described in [1], whenthe positive eigenenergies lie under the potential barrier.

The boundary conditions for this problem are:

y(0)= 0,

y(x)∼ cos
[√

Ex
]

for largex.

The domain of numerical integration is[0,15].
For comparison purposes in our numerical illustration we use the explicit

Numerov-type method with phase-lag of order six developed by Chawla et al. in [19]
(labelled as method [a]), the four-step method of Henrici [8] (labelled as method [b]), the
classical eight-step method developed by Quinlan et al. in [21] (labelled as method [c]),
the new method I (labelled as method [d]), the new method II (labelled as method [e])
and the new method III (labelled as method [f]).

The numerical results obtained by the above four methods, with stepsizesh =
1/2n, n = 4(1)7, were compared with the analytic solution of the resonance prob-
lem with the Woods–Saxon potential, rounded to six decimal places. Figure 2 shows
the errors− log(Error) whereError = |Ecalculated− Eanalytical|/Eanalytical for the highest
eigenenergyE3 = 989.701916 using several values ofn.

4.2. Modified Woods–Saxon potential

A second example of this method is illustrated by solving a similar problem using
the modified Woods–Saxon potential, given by

V (x) = VW(x)+ D

x
, (20)

whereVW is the Woods–Saxon potential (19). For the purpose of our numerical exper-
iments we use the same parameters as in [2], i.e.,D = 20, l = 2. Figure 3 shows
the errors− log(Error) whereError = |Ecalculated− Eanalytical|/Eanalytical of the highest
eigenenergyE3 = 1002.768393, for several values ofn.
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Figure 2. Values of− log(Error) for several values ofn for the resonanceE3 = 989.7019159.

Figure 3. Values of− log(Error) for several values ofn for the resonanceE3 = 1002.768393.
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SinceV (x) is singular at the origin, we use the special strategy of [2]. We start the
integration from a pointε > 0 and the initial valuesy(ε) andy(ε+h) for the integration
scheme are obtained using a perturbative method (see [1]). As in [2] we use the value
ε = 1/4 for our numerical experiments.

From the above results it follows that the new method is much more accurate than
the other well-known methods of the same kind.

All computations were carried out on a IBM PC-AT compatible 80486 using dou-
ble precision arithmetic with 16 significant digits accuracy (IEEE standard).

5. Conclusions

In this paper a family of eight-step eighth order symmetric methods is introduced.
For these methods a direct formula for the computation of the phase-lag is obtained.
Based on this formula, some eight-step symmetric methods with minimal phase-lag are
developed. The new methods have a larger interval of periodicity than the classical one.
Numerical illustrations on the radial Schrödinger equation indicate that the new methods
are more efficient than older ones.
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